Effect of timber harvest on soil carbon storage at Blodgett Experimental Forest, California

Author:

Black T.A.,Harden J.W.

Abstract

Four plots from a mixed conifer forest were similarly cleared, burned, and replanted at various times over 17 years; a plot logged 79 years before sampling was used as a control. The plots had similar slope (2 to 15%, midslope position), aspect (south to southeast), and soil type (Holland series: mesic Haploxeralf; a Gray Brown Luvisol in the Canadian classification system). Twenty sites at each plot were sampled volumetrically by horizon to 20 cm below the organic–mineral soil boundary. Samples were analyzed for bulk density, organic C, and total N. There was an initial loss (15%) of organic C from the soil within 1 to 7 years, likely the result of oxidation (burning and decomposition) and erosion. For 17 years of forest regrowth, the soil continued to lose C (another 15%), probably owing to decomposition of slash material and possibly erosion, despite the slight accumulation of new litter and roots. After 80 years of regrowth, rates of carbon accumulation exceeded rates of loss, but carbon storage had declined and was not likely to recover to preharvest levels. Timber harvest and site preparation dramatically altered soil C and N distribution, in which C/N ratios after site preparation were initially high throughout the upper 20 cm. Subsequently, C/N ratios became lower with depth and with recovery age. Although stocks of C and N varied considerably among the plots and did not change consistently as a function of recovery age, the C/N ratios did vary systematically with recovery age. We hypothesize that the amount of C ultimately stored in the soil at steady state depends largely on N reserves and potentials, which appear to vary with erosion, intensity of burning, and site treatment.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3