Remarks on the internal motion in diphenyl ether. Fluorophenyl ethers

Author:

Schaefer Ted,Penner Glenn H.,Takeuchi Craig,Tseki Potlaki

Abstract

The 13C nuclear magnetic resonance chemical shifts and the 13C,19F spin–spin coupling constants are reported for 4,4′-difluorophenyl ether and 4-fluorophenyl phenyl ether in CS2 and in acetone-d6 solutions. An estimate of 6J90, the extremum in the σ–π coupling constant between the 19F nucleus on one ring and the ipso13C nucleus on the other, is obtained from measurements on 2,6-dibromo-4-fluorophenyl phenyl ether. The ensuing estimates of [Formula: see text], the expectation values of sin2 θ as obtained from 6J(13C,19F), are compared with those obtained from STO-3G MO computations for diphenyl ether and its 4-fluoro derivatives. These computations give conformational energies at 30° intervals of the angles of twist about the two C—O bonds. In rough agreement with C-INDO computations, interconversion of the helical forms is calculated to occur most easily by the so-called one-ring flip mechanism; the barrier to interconversion is less than 1 kJ/mol in the ether and its 4-fluoro derivatives. It appears that the conformational behaviour of these derivatives is unaltered by passage from CS2 to acetone solutions at 300 K. Furthermore, [Formula: see text] values from 6J(13C,I9F) in solution are very similar to those obtained from the computations on the free molecules. If this agreement is not accidental, then it may arise from a high degree of flexibility of the molecules in which, by a disrotatory or one-ring flip mechanism requiring a very low energy of activation, one helical or C2 conformation can be converted to another. The other conformations have considerably higher energies and the solvents do not appear to lower these energies enough to favor their populations significantly at 300 K.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3