Patterns of leaf area and growing space efficiency in young even-aged and multiaged coast redwood stands

Author:

Berrill John-Pascal1,O’Hara Kevin L.1

Affiliation:

1. Department of Environmental Science, Policy and Management. University of California at Berkeley, 137 Mulford Hall, MC 3114, Berkeley, CA 94720-3114, USA.

Abstract

Projected leaf area estimates were used to predict volume increment and basal area of second-growth coast redwood ( Sequoia sempervirens (D. Don) Endl.) trees on Jackson Demonstration State Forest, Mendocino County, California. Sample plots were established within even-aged and multiaged mixed-species stands. Redwood tree basal area growth was more strongly related to sapwood area than to tree size and differed significantly between canopy strata and overstory stratum crown classes. Projected leaf area was predicted from sapwood area for each tree, and summarized to the stand level, giving a maximum stand leaf area index (LAI) estimate of 14.9 m2/m2. Redwood tree growing space efficiency (GSE; the ratio of stem volume increment to leaf area) was greatest on average among emergent overstory trees, followed by dominant and codominant overstory trees. There was no evidence of declining overstory tree GSE with increasing leaf area over the range of data collected. A nonlinear model predicted increasing understory tree GSE with increasing leaf area. Models that predict basal area and LAI were developed to permit implementation of GSE models from basic inventory data.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3