Malleability of human skeletal muscle sarcoplasmic reticulum to short-term training

Author:

Green Howard J.1,Burnett Margaret1,Kollias Helen1,Ouyang Jing1,Smith Ian1,Tupling Susan1

Affiliation:

1. Department of Kinesiology University of Waterloo, Waterloo, ON N2L3G1 Canada.

Abstract

This study investigated the hypothesis that adaptations would occur in the sarcoplasmic reticulum in vastus lateralis soon after the onset of aerobic-based training consistent with reduced Ca2+-cycling potential. Tissue samples were extracted prior to (0 days) and following 3 and 6 days of cycling performed for 2 h at 60%–65% of peak aerobic power (VO2peak) in untrained males (VO2peak= 47 ± 2.3 mL·kg–1·min–1; mean ± SE, n = 6) and assessed for changes (nmol·mg protein–1·min–1) in maximal Ca2+-ATPase activity (Vmax), Ca2+-uptake, and Ca2+-release (phase 1 and phase 2) as well as the sarcoplasmic (endoplasmic) reticulum Ca2+-ATPase (SERCA) isoforms. Training resulted in reductions (p < 0.05) in SERCA1a at 6 days (–14%) but not at 3 days. For SERCA2a, reductions (p < 0.05) were also noted only at 6 days (–7%). For Vmax, depressions (p < 0.05) were found at 6 days (172 ± 11) but not at 3 days (176 ± 13; p < 0.10) compared with 0 days (192 ± 11). These changes were accompanied by a lower (p < 0.05) Ca2+-uptake at both 3 days (–39%) and 6 days (–48%). A similar pattern was found for phase 1 Ca2+-release with reductions (p < 0.05) of 37% observed at 6 days and 23% (p = 0.21) at 3 days of training, respectively. In a related study using the same training protocol and participant characteristics, microphotometric determinations of Vmaxindicated reductions (p < 0.05) in type I at 3 days (–27%) and at 6 days (–34%) and in type IIA fibres at 6 days (–17%). It is concluded that in response to aerobic-based training, sarcoplasmic reticulum Ca2+-cycling potential is reduced by adaptations that occur soon after training onset.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3