Particle-Size-Conversion Efficiency and Contaminant Concentrations in Lake Ontario Biota

Author:

Borgmann Uwe,Whittle D. M.

Abstract

The particle-size-conversion efficiency (log food consumption/production divided by log predator prey size ratio) is shown to be directly related to the relationship between the concentration of persistent contaminants accumulated primarily through the food chain and body size for organisms in pelagic ecosystems. The difference between particle-size-conversion efficiency for biomass and that for the contaminant gives the slope of the relationship between log contaminant concentration and log body size. This provides a useful theoretical framework for analyzing contaminant concentrations in aquatic biota without the need for specifying trophic level but still incorporating the idea of food chain accumulation. Concentrations of PCB, DDT, and mercury were examined in aquatic organisms from Lake Ontario, ranging in size from zooplankton to large salmonids (a 108 -fold range in dry weight). The slope of the double log plot of concentration versus weight varied from 0.20 to 0.22 for PCB and DDT and was approximately equal to 0.13 for mercury. This indicates that mercury is accumulated less efficiently through the food chain than PCB or DDT. After correcting for incomplete uptake and retention of the contaminant, an estimate of particle-size-conversion efficiency for biomass of about 0.26 was obtained, which agrees reasonably well with previous estimates obtained from growth efficiency experiments and analysis of particle-size spectra. These calculations indicate that potential fish production in Lake Ontario is ~ 120-fold lower than zooplankton production (for fish averaging 108-fold larger in body size as compared to zooplankton).Key words: particle-size-conversion efficiency, PCB, DDT, mercury, zooplankton production, fish production

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Contaminant curiosity and pollutant puzzles: Conceptual insights in ecotoxicity and practical implementation of higher-tiered risk assessment.;Aquatic Ecosystem Health & Management;2023-04-01

2. Contaminants and Ecotoxicology;The Lake Charr Salvelinus namaycush: Biology, Ecology, Distribution, and Management;2021

3. Basin‐Specific Pollutant Bioaccumulation Patterns Define Lake Huron Forage Fish;Environmental Toxicology and Chemistry;2020-07-13

4. Surfing the biomass size spectrum: some remarks on history, theory, and application;Canadian Journal of Fisheries and Aquatic Sciences;2016-04

5. On the use of biomass size spectra linear adjustments to design ecosystem indicators;Scientia Marina;2013-04-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3