Isotope effects in nucleophilic substitution reactions XI. The effect of ion-pairing, substituents, and the solvent on SN2 transition states

Author:

Westaway Kenneth Charles,Jiang W

Abstract

The secondary alpha deuterium and primary leaving group nitrogen KIEs and Hammett ρ values found for the free ion and ion-pair SN2 reactions between benzyldimethylphenylammonium ion and sodium para-substituted thiophenoxides in methanol at 20.000°C show how (i) ion-pairing of the nucleophile, (ii) a change in substituent in the nucleophile, and (iii) a change in solvent alters the structure of a Type II SN2 transition state. Ion-pairing shortens the weaker sulfur - alpha carbon (S—Cα) transition state bond significantly but does not alter the stronger alpha carbon - leaving group (Cα—N) transition state bond as the bond strength hypothesis predicts. However, the effect of ion pairing, i.e., the decrease in the S—Cα bond on ion-pairing, decreases as a more electron-withdrawing substituent is added to the nucleophile, and the S—Cα bond actually increases when the nucleophile is the p-chlorothiophenoxide ion. The identical Hammett ρ values of -0.85 and -0.84 for the free ion and ion-pair reactions, respectively, may be observed because, on average, the S—Cα bonds are identical in the free ion and ion-pair transition states. When a more electron-donating substituent is added to the nucleophile, an earlier transition state is found in both the ion-pair and free ion reactions. However, the substituent effect is smaller in the ion-pair reactions, presumably because the change in the negative charge on the sulfur atom with substituent is greater in the free ion than in the ion-pair. The substituent effect on transition state structure suggested by the KIEs is not predicted by any of the theories that are used to predict substituent effects on SN2 reactions. Both the secondary alpha deuterium and primary leaving group nitrogen KIEs and the Hammett ρ values indicate that the transition state is earlier when the solvent is changed from DMF to methanol as the "solvation rule for SN2 reactions" predicts. This probably occurs because an earlier, more ionic, transition state is more highly solvated (more stable) in methanol.Key words: nucleophilic substitution, SN2, isotope effect, transition state, substituent, ion-pair.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3