Unusual potassium channels mediate nonadrenergic noncholinergic nerve-mediated inhibition in opossum esophagus

Author:

Jury J.,Jager L. P.,Daniel E. E.

Abstract

Field stimulation of the circular muscle of the opossum esophagus produces a transient hyperpolarization (inhibitory junction potential, IJP) followed by an "off" depolarization. A similar nonadrenergic, noncholinergic (NANC) response in guinea pig taenia caecum has been shown to be due to an increase in the potassium ion permeability of the smooth muscle cell membrane. Double sucrose gap studies showed a decrease in resistance during the IJP, and a reversal at an estimated membrane potential of about −90 mV (4 mM K+). The reversal potential was dependent on the extracellular potassium concentration, shifting to −75 mV when the potassium in the superfusion medium was increased to 10 mM. The IJP in the opossum esophageal circular smooth muscle is therefore like the IJP of the guinea pig taenia caecum in that it is probably due to a selective increase in potassium ion permeability. Potassium conductance blocking agents, tetraethylammonium chloride (TEA, 20 mM) and 4-aminopyridine (4-AP, 5 mM) both caused a depolarization of the smooth muscle cell membrane, but TEA increased the membrane resistance, whereas 4-AP did not affect the membrane conductance in a consistent way. A decrease in IJP amplitude owing to these agents was not apparent. Apamin (10 μM) did not affect the membrane potential, the membrane resistance, or the IJP. Quinine (0.1 mM) produced effects quantitatively similar to those of TEA. Quinine (1 mM) did abolish the IJP, however, this was likely due to a blockade of impulse transmission of the intramural nerves. These results suggest that the receptor-operated channels opened by the NANC-nerve mediator in this tissue are unusual in that they are different from those functioning to maintain the resting membrane potential and they differ from those involved in the IJP in the guinea pig taenia caecum.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3