Abstract
A combined variational–Green's function approach to the determination of the capacitance of various useful three-dimensional geometries is developed. This formalism leads to general, exact expressions for the capacitance, which can be used with all geometries provided the spatial distribution of the charge can be determined. In particular, the theory takes into account the finite thickness and unequal areas of the capacitor plates. Specific applications of the theory include circular capacitors with disc and ring-shaped charged plate geometries. Such geometries are commonly encountered in experimental set-ups for capacitive measurements of thin film thicknesses in the field of microelectronics. Numerical results indicate that the values of thin film thicknesses calculated via simplified one-dimensional formulae for the capacitance may be incorrect by more than 10%
Publisher
Canadian Science Publishing
Subject
General Physics and Astronomy
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献