The mechanism of de novo synthesis of fructooligosaccharides in leaf disks of certain Asteraceae. III.

Author:

Chandorkar K. R.,Collins F. W.

Abstract

14C-tracer experiments revealed that both endogenous and exogenous substrate was incorporated in the fructosans synthesized in leaf disks during incubation on phosphate-buffered sugar media. At least some of the endogenous substrate was derived from a source which was insoluble in 80% ethanol at the start of the incubation period. Endogenous and exogenous substrates were distributed in the fructosans in a pattern which was qualitatively similar regardless of the type of sugar supplied exogenously. A complex relationship was exhibited between the specific activity of various fructosan oligomers, expressed on a gram basis, and their chain length. However, expressed on a molar basis, the specific activity of the fructosyl tail portion of each homolog appeared to be linearly related to the number of hexosyl residues that it contained. Such a relationship suggests that enzymes similar to the Jerusalem artichoke tuber transfructosylases are present in leaf disk tissue after 72 h incubation and indeed may function in the de novo synthesis of fructosans in vivo.

Publisher

Canadian Science Publishing

Subject

Plant Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3