Affiliation:
1. Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada.
Abstract
Uridine 5′-diphosphate glucuronic acid (UDPGlcUA) is a key intermediary metabolite in many species, including pathogenic bacteria and humans. It is biosynthesized from UDP-glucose (UDPGlc) by uridine diphosphate glucose dehydrogenase (UDPGlcDH) via a twofold two-electron–one-proton oxidation that successively transforms the 6-hydroxymethyl of glucopyranose into a formyl, and the latter into the final carboxylic function. The catalytic mechanism of UDPGlcDH was investigated using a large enzyme active-site model in combination with the B3LYP method and the polarizable continuum model (IEF-PCM) self-consistent reaction field. The latter was used to correct for the long-range electrostatic effect of the protein environment. The overall mechanism consists of four catalytic steps: (i) NAD+-dependent oxidation of glucose to glucuronaldehyde, (ii) nucleophilic addition of Cys260–SH to glucuronaldehyde to form a 6-thiohemiacetal intermediate, (iii) NAD+-dependent oxidation of the 6-thiohemiacetal to form a 6-thioester intermediate, and finally, (iv) hydrolysis of the 6-thioester to give glucuronic acid. In addition, this study also provides insight into the debated roles of Lys204 and Asp264, and the most likely protonation state of a reactive Michaelis complex of UDPGlcDH.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献