Hydrophobic binding domains of rat intestinal maltase–glucoamylase

Author:

Lee L.,Forstner G.

Abstract

Rat intestinal microvillus maltase–glucoamylase was isolated by detergent extraction and purification in the presence of protease inhibitors as previously described and incorporated into phospholipid vesicles. After purification of the vesicles on Scphadex G-50, maltase was labelled with 3-trifluoromethyl-3-(m-[125I]iodophenyl) diazirine ([125I]T1D) by photolysis using a water-jacketed mercury vapour lamp with a saturated CuSO4 filter. The labelled enzyme was extracted with acetone, resuspended in 1% Triton X-100, reincorporated into phospholipid vesicles, and digested with activated papain to release the hydrophilic polar head of the enzyme from the vesicle bilayer. Vesicle-bound and free enzyme components were separated on Scpharose 4B. Ninety percent of the enzymatic activity was free, while a similar percentage of radioactive label remained with the vesicles in keeping with the separation of an active polar headpiece from a labelled apolar peptide in the lipid bilayer. The vesicle fractions were subjected to chromatography on Sephadex LH-60 with cthanol – formic acid (7:3) as the eluant. A single radioactive peak (14 kilodaltons (kDa)) was separated from labelled lipid. Sodium dodecyl sulfate – polyacrylamide gel electrophoresis of the peak showed a radioactive doublet of 26–28 kDa, possibly representing a dimer. No other labelled peptides were found. These results suggest that detergent-solubilized maltase–glucoamylase is inserted into the phospholipid bilayer via an apolar peptide with a minimum molecular mass of 14 kDa. The peptide probably represents a terminal anchor segment of the 145-kDa subunit which is converted to 130 kDa when the membrane-bound enzyme is solubilized by papain.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3