Maternal and environmental influences on growth and survival of embryonic and hatchling snapping turtles (Chelydra serpentina)

Author:

Brooks Ronald J.,Bobyn Michele L.,Galbraith David A.,Layfield James A.,Nancekivell E. Graham

Abstract

Clutches of six female snapping turtles (Chelydra serpentina) each were distributed among six incubators set at one of three constant temperatures (22.0, 25.6, and 28.6 °C) in either a wet (−100 kPa) or a dry (−500 kPa) vermiculite substrate. We tested for influences of egg mass, clutch, and incubation temperature and moisture on survival of embryos and hatchlings, on size at hatching, and on rate of post-hatching growth over 7 months. Intraclutch variation in egg mass had no effect on embryonic mortality. Mass at hatching was correlated with egg mass, but neither variable was related significantly to post-hatching survival or rate of growth. Eggs incubated at the highest temperature produced smaller hatchlings which subsequently grew more slowly than those from eggs incubated at the low and intermediate temperatures. Eggs incubated at the intermediate temperature produced larger turtles at 7 months post-hatching than did eggs incubated at the low or high temperatures. Eggs incubated in wet substrates produced larger hatchlings than those in dry substrates, but post-hatching growth rates were independent of these effects of moisture. Eggs incubated at the two extreme temperatures produced mostly females; those at 25.6 °C produced only males. Interclutch variation was significant for egg mass, mass at hatching, and survival of embryos, and was the most important influence on variation in post-hatching rates of growth. These results indicate that egg size and size at hatching may not be useful indicators of intraspecific variation in egg quality or post-hatching success in turtles, unless differences among clutches and embryonic thermal experience are also considered, particularly in relation to parental investment in the amount, quality, and apportionment of the egg's yolk.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3