THE REACTIVE SPECIES IN ACTIVE NITROGEN

Author:

Wright A. N.,Nelson R. L.,Winkler C. A.

Abstract

A study has been made of the discrepancy between the N-atom content of active nitrogen as inferred from the maximum HCN production from the reaction of many hydrocarbons, and that indicated by the extent of NO destruction. The HCN production from several hydrocarbons was similar at high reaction temperatures in a spherical reaction vessel, and was independent of reaction temperature in a cylindrical reaction vessel. The ratio (NO destroyed)/(HCN produced) was found to be independent of the mode of excitation òf the molecular nitrogen and of the N-atom concentration, and to be unaffected by the addition, upstream, of N2O or CO2. Although NH3 was found to be a minor product of the hydrocarbon reactions, HCN accounted for at least 96% of the N-atom content of the products under conditions where its formation is considered a measure of the N-atom concentration. The NO "titration" value, the maximum extent of HCN production from C2H4, and the destruction of NH3 after different times of decay of active nitrogen gave evidence that part of the NO reaction occurred, as does the NH3 reaction, with excited nitrogen molecules. The long lifetime of the N2* species capable of reaction with NO or NH3, as calculated from the above data, strongly favors its identification as low vibrational levels of the N2(A3u+) molecule. A consideration of the values for the NO/HCN, NH3/HCN, and NH3/NO ratios, after different times of decay, for poisoned and unpoisoned systems, suggested that the N2* responsible for the NH3 reaction is formed only during homogeneous recombination of N atoms, while the N2* responsible for reaction with NO might be produced by wall recombination as well. Possible reactions of excited molecules present in the active nitrogen – NO system that might lead to decomposition of NO without consumption of N atoms are discussed.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3