Author:
Kyakumoto Seiko,Ota Minoru,Sato Nobuko
Abstract
Human salivary gland adenocarcinoma cells (HSG) express nuclear receptors, all-trans-retinoic acid (at-RA) receptors (RARs), and retinoid X/9-cis-retinoic acid (9-c-RA) receptors (RXRs). In order to investigate whether the endogenous RARs or RXRs of HSG cells can induce transcription activation, the thymidine kinase promoter (TK)-driven luciferase reporter gene containing the retinoic acid response element (RARE), of RARβ, βRARE2-TK-Luc, was transfected into HSG cells and ligand-dependent transcription activation was examined. Luciferase activity of cell lysate increased by the treatment with either at-RA or 9-c-RA. Co-transfection of RARα and (or) RXRα-expression plasmids with the reporter gene enhanced the luciferase activity, suggesting that endogenous RARs and RXRs work as ligand-dependent transfactors in HSG cells. Reverse transcriptase - polymerase chain reaction analysis revealed that HSG cells express chicken ovalbumin upstream promoter - transcription factor I (COUP-TFI). Co-transfection of COUP-TFI-expression plasmid suppressed the at-RA-induced transcription activation of the reporter gene. Similar results were shown using a chromatin-integrated reporter gene system, using a stably transfected β-RARE2-TK-β-galactosidase (β-Gal) reporter gene. The at-RA-dependent increase in the β-Gal expression was completely inhibited by COUP-TFI. The transfection of antisense oligonucleotide of COUP-TFI squelched the RA-dependent growth inhibition induced by RAR-RXR heterodimers. Conclusively, RARs and RXRs of HSG cells are functional and play roles as transactivators in at-RA-sensitive processes such as the proliferation or differentiation of cells. COUP-TFI very likely regulates these processes by repressing the functions of these transactivators.Key words: retinoic acid receptor, retinoid X receptor, COUP-transcription factor (COUP-TF), retinoic acid response element.
Publisher
Canadian Science Publishing
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献