The electronic emission spectrum of triatomic hydrogen. I. Parallel bands of H3 and D3 near 5600 and 6025 Å

Author:

Dabrowski I.,Herzberg G.

Abstract

A spectrum of triatomic hydrogen and deuterium was first discovered by means of an emission band with diffuse rotational structure near 5600 Å. An additional band of similar but much better resolved structure was subsequently observed near 6025 Å. The detailed analysis of these two bands for both H3 and D3 is described in this paper. Both bands are [Formula: see text] bands of a symmetric top; their structure establishes beyond doubt that triatomic hydrogen has a D3h structure in its Rydberg states. The molecular constants in upper and lower states are close to those in the ground state of H3+ (or D3+) in accordance with the assumption that these states are Rydberg states in which a single electron moves around a H3+ or D3+ core. The predicted states of such a Rydberg electron in a field of D3h symmetry account very well for the observed electronic states, both those involved in the [Formula: see text] bands described here and those involved in the [Formula: see text] bands to be discussed in subsequent papers of this series. The lowest state of the Rydberg electron 2p2E′ is unstable and dissociates to H2 + H in their ground states. It is this state that causes predissociation in the two lower states 2s2A1′and 2p2A2″ of the two [Formula: see text] bands here under discussion. The predissociation of 2s2A1′ is vibronically allowed and fairly strong such that all lines have widths of about 7 cm−1 for D3 and 30 cm−1 for H3. The predissociation of the 2p2A2″ state is vibronically forbidden and occurs only on account of ro-vibronic interaction. H3+ ions are assumed to be present in the interstellar medium. When they recombine with electrons they must necessarily emit the spectra described in this series of papers.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 155 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3