Abstract
Exercise physiologists are interested in metabolic myopathies because they demonstrate how knocking out a component of a specific biochemical pathway can alter cellular metabolism. McArdle's disease (myophosphorylase deficiency) has often been studied in exercise physiology to demonstrate the influence of removing the major anaerobic energy supply to skeletal muscle. Studies of patients with McArdle's disease have shown the increased reliance on blood-borne fuels, the importance of glycogen to maximal aerobic capacity, and the use of nutritional strategies to bypass metabolic defects. Myoadenylate deaminase deficiency is the most common metabolic enzyme deficiency in human skeletal muscle. It is usually compensated for endogenously and does not have a major influence on high-energy power output. Nutritional interventions such as carbohydrate loading and carbohydrate supplementation during exercise are essential components of therapy for patients with fatty acid oxidation defects. Cases of mitochondrial myopathies illustrate the importance of peripheral oxygen extraction for maximal aerobic capacity and show how both exercise and nutritional interventions can partially compensate for these mutations. In summary, metabolic myopathies provide important insights into regulatory and nutritional aspects of the major biochemical pathways of intermediary metabolism in human skeletal muscle. Key words: myoadenylate deaminase deficiency, MELAS syndrome, McArdle's disease, mitochondrial disease, inborn errors of metabolism.
Publisher
Canadian Science Publishing
Subject
Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献