Collision strength and effective collision strength for Ba XLVIII

Author:

Mohan Man1,Goyal Arun1,Khatri Indu1,Singh Shougaijm Somorendro1,Singh A.K.2

Affiliation:

1. Department of Physics and Astrophysics, University of Delhi, Delhi-110007, India.

2. Department of Physics, D.D.U. College, University of Delhi, Delhi-110015, India.

Abstract

Collision strengths for the lowest 52 fine-structure levels of Ba XLVIII have been computed using Dirac atomic R-matrix code (DARC). Resonances in the threshold region have been completely resolved and the contributions of these resonances to allowed and forbidden transitions have been presented. Effective collision strengths have also been determined within a temperature range from the ground state. Collision strengths from ground state have also been computed with the relativistic distorted wave method, the flexible atomic code (FAC) was used for checking the accuracy of our results. The present work represents a new and significant work with improvement in the field. We believe that our presented data of collision and effective collision strengths may be useful in the future for benchmark calculations and for plasma diagnostics.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3