Natural convection in a triangular cavity filled with a nanofluid-saturated porous medium using three heat equation model

Author:

Sabour Mahmoud11,Ghalambaz Mohammad11

Affiliation:

1. Department of Mechanical Engineering, Dezful Branch, Islamic Azad University, Dezful, Iran.

Abstract

The present study aims to examine the local thermal non-equilibrium natural convection heat and mass transfer of nanofluids in a triangular enclosure filled with a porous medium. The effect of the presence of nanoparticles and the thermal interaction between phases on the flow, temperature distribution of phases, the concentration distribution of nanoparticles as well as the Nusselt number of phases is theoretically studied. The interaction between the phases of nanoparticles and the base is taken into account by using a three thermal energy equation model while the concentration distribution of nanoparticles is modeled by Buongiorno’s model. A hot flush element is mounted at the vertical wall of the triangle enclosure to provide a constant temperature of Th while the inclined wall is at a constant temperature of Tc. A three heat equation model by considering the local thermal non-equilibrium model of nanoparticles, the porous medium, and the base fluid is developed and utilized for natural convection of nanofluids in an enclosure. The drift-flux of nanoparticles due to the nano-scale effects of thermophoresis and Brownian motion effects is addressed. The governing equations are represented in a non-dimensional form and solved by employing the finite element method. The results indicate that the increase of Rayleigh number shows a significant increase in the average Nusselt number for the base fluid phase, a less significant increase in the average Nusselt number for the solid matrix phase, and almost an insignificant effect in the average Nusselt number of the nanoparticle phase. Increasing the buoyancy ratio parameter (the ratio of mass transfer buoyancy forces to the thermal buoyancy forces) tends to reduce and increase the average Nusselt number in fluid and porous phases, respectively. An optimum value of buoyancy ratio parameter for the average Nusselt number of the nanoparticle phase is observed.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3