Optimization of reaction parameters affecting crystal phase growth and purity of BaCeO3 and BaCe1-xYbxO3-δ nanopowders and investigating high protonic conductivity of sulfonated poly(ether ether ketone) – BaCe0.85Yb0.15O3-δ composite membrane

Author:

Salehi Artimani Javad1,Ardjmand Mehdi1,Enhessari Morteza2,Javanbakht Mehran34

Affiliation:

1. Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.

2. Department of Chemistry, Naragh Branch, Islamic Azad University, Naragh, Iran.

3. Department of Chemistry, Amirkabir University of Technology, Tehran, 1599637111, Iran.

4. Fuel Cell and Solar Cell Laboratory, Renewable Energy Research Center, Amirkabir University of Technology, Tehran, 1599637111, Iran.

Abstract

Pure and ytterbium-doped BaCeO3 nanostructures were synthesized by solid-state reaction with the mixtures of Ba(NO3)2, BaCO3, (NH4)2Ce(NO3)6, and Yb2O3 at 800 °C for 10 and 24 h. Doping of ytterbium ions in the BaCeO3 host matrix has been studied and confirmed using powder X-ray diffraction. The results from the Rietveld analysis indicated that the sample has a main BaCeO3 structure with the space group of [Formula: see text]. Through intensive experiments and analysis, optimum reaction conditions for the synthesis of doped nanoparticles including the crystal phase impurity and reaction time are proposed. The results of the study showed that for the reaction time of 24 h, BaCO3 reacted more effectively with (NH4)2Ce(NO3)6 than Ba(NO3)2 did. On the other hand, the purity values of 97% and 95% were obtained for pure and Yb3+ doped BaCeO3 samples, respectively. Field emission scanning electron microscope images revealed that the synthesized BaCeO3 nanomaterials have mono-shaped sphere morphology. Furthermore, ytterbium-doped nanoparticles were incorporated into the matrix of sulfonated poly(ether ether ketone) (SPEEK) membranes (SPYb) with the aim of enhancing proton conductivity. The prepared SPYb nanocomposite membrane containing 1.7 wt.% of BaCe0.85Yb0.15O3-δ nanoparticles exhibited a high proton conductivity (67 mS/cm) at 80 °C.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3