Affiliation:
1. Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada.
Abstract
The formation of host–guest complexes was studied for two hosts: β-cyclodextrin (β-CD) and a cross-linked polymer containing an equimolar ratio of β-CD and hexamethylene diisocyanate (HDI), denoted as HDI-1. The thermodynamics of host–guest binding were studied with 1-anilinonaphthalene-8-sulfonic acid (1,8-ANS) using steady-state fluorescence spectroscopy in aqueous solution at variable temperature and ambient pH. The association of 1,8-ANS with β-CD and HDI-1 showed a fluorescence enhancement of ∼4 and 12 units, respectively. Greater fluorescence enhancement for the polymer/dye system indicates the presence of multiple binding sites (inclusion and interstitial). By contrast, the β-CD/dye system adopts trends that indicate the formation of well-defined inclusion complexes. HDI-1 has inclusion sites (β-CD) and interstitial domains (HDI) that afford dual binding with variable binding affinity. Simplified binding models employed herein address the role of inclusion binding without an explicit account for higher order or secondary binding equilibria. The approximate 1:1 binding constant (K1:1) for CD/1,8-ANS is about two-fold greater over the HDI-1/1,8-ANS system. HDI-1 displays cooperative effects among the polymer subunits, according to changes in relative fluorescence intensity due to structural transitions and binding site loci. The relative fluorescence intensities of the HDI-1/1,8-ANS system relate to a reversible temperature-driven structural transition (globular ⇌ extended) of the polymer between 5 °C and 60 °C, in contrast to the β-CD/1,8-ANS complex. The temperature- and guest-driven structural transition, described as the “molecular accordion” effect, is supported by new insight provided by complementary fluorescence and 1H NMR spectral results in aqueous solution.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献