A spectroscopic study of a cyclodextrin-based polymer and the “molecular accordion” effect

Author:

Karoyo Abdalla H.11,Wilson Lee D.11

Affiliation:

1. Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada.

Abstract

The formation of host–guest complexes was studied for two hosts: β-cyclodextrin (β-CD) and a cross-linked polymer containing an equimolar ratio of β-CD and hexamethylene diisocyanate (HDI), denoted as HDI-1. The thermodynamics of host–guest binding were studied with 1-anilinonaphthalene-8-sulfonic acid (1,8-ANS) using steady-state fluorescence spectroscopy in aqueous solution at variable temperature and ambient pH. The association of 1,8-ANS with β-CD and HDI-1 showed a fluorescence enhancement of ∼4 and 12 units, respectively. Greater fluorescence enhancement for the polymer/dye system indicates the presence of multiple binding sites (inclusion and interstitial). By contrast, the β-CD/dye system adopts trends that indicate the formation of well-defined inclusion complexes. HDI-1 has inclusion sites (β-CD) and interstitial domains (HDI) that afford dual binding with variable binding affinity. Simplified binding models employed herein address the role of inclusion binding without an explicit account for higher order or secondary binding equilibria. The approximate 1:1 binding constant (K1:1) for CD/1,8-ANS is about two-fold greater over the HDI-1/1,8-ANS system. HDI-1 displays cooperative effects among the polymer subunits, according to changes in relative fluorescence intensity due to structural transitions and binding site loci. The relative fluorescence intensities of the HDI-1/1,8-ANS system relate to a reversible temperature-driven structural transition (globular ⇌ extended) of the polymer between 5 °C and 60 °C, in contrast to the β-CD/1,8-ANS complex. The temperature- and guest-driven structural transition, described as the “molecular accordion” effect, is supported by new insight provided by complementary fluorescence and 1H NMR spectral results in aqueous solution.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3