New bis 1,3,4-oxadiazole derivatives: syntheses, characterizations, computational studies, and antioxidant activities

Author:

Ünver Yasemin1,Gökce Halil2,Bektaş Ersan3,Çelik Fatih1,Değirmencioğlu İsmail1

Affiliation:

1. Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey.

2. Vocational School of Health Services, Giresun University, 28200 Giresun, Turkey.

3. Espiye Vocational School, Giresun University, 28600 Espiye, Giresun, Turkey.

Abstract

In this study, two new bis oxadiazole derivatives (2a and 2b) were synthesized. The new compounds were characterized by elemental analyses, IR, 1H NMR, 13C NMR, and mass spectral studies and were tested for their antioxidant activity. According to the results, it was observed that the synthesized compounds (2a and 2b) had a very high activity in both 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing ability of plasma (FRAP) tests. The approximate geometries of the compounds 2a and 2b were prepared with GaussView5 visualization program. The optimized molecular geometric parameters, vibrational wavenumbers, UV–vis parameters, and HOMO–LUMO simulations were computed using Gaussian 09W program. The computations were performed at 6-311++G(d,p) basis set using the B3LYP functional in density functional theory (DFT) method. The harmonic vibrational wavenumbers computed in gas phase were scaled with 0.958 (1700–4000 cm−1) and 0.983 (0–1700 cm−1) for the B3LYP/6-311++G(d,p) level. To calculated the UV–vis spectroscopic parameters with TD-DFT method, the compounds 2a and 2b were optimized in DMF and DMSO solvents using the integral equation formalism polarizable continuum model (IEFPCM) method at the B3LYP/6-311++G(d,p) level. The HOMO, LUMO, and UV–vis analyses were studied to interpret intramolecular charge transfers.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3