Affiliation:
1. Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Abstract
The precise neurobiological mechanisms of tramadol abuse underlying the cognitive function are still unknown. The aim of the present study was to examine the possible effects of intra-CA1 injections of N-methyl-d-aspartate (NMDA), a glutamate NMDA receptor (NMDAR) agonist, and d,l-2-amino-5-phosphonopentanoic acid (DL-AP5), a competitive NMDAR antagonist, on tramadol state-dependent memory. A single-trial step-down passive avoidance task was used for the assessment of memory retrieval in adult male NMRI mice. Post-training i.p. administration of an atypical μ-opioid receptor agonist, tramadol (2.5 and 5 mg/kg), dose-dependently induced impairment of memory retention. Pre-test injection of tramadol (2.5 and 5 mg/kg) induced state-dependent retrieval of the memory acquired under post-training administration of tramadol (5 mg/kg) influence. Pre-test intra-CA1 injection of NMDA (10−5 and 10−4 μg/mouse) 5 min before the administration of tramadol (5 mg/kg, i.p.) dose-dependently inhibited tramadol state-dependent memory. Pre-test intra-CA1 injection of DL-AP5 (0.25 and 0.5 μg/mouse) reversed the memory impairment induced by post-training administration of tramadol (5 mg/kg). Pre-test administration of DL-AP5 (0.25 and 0.5 μg/mouse) with an ineffective dose of tramadol (1.25 mg/kg) restored the retrieval and induced tramadol state-dependent memory. It can be concluded that dorsal hippocampal NMDAR mechanisms play an important role in the modulation of tramadol state-dependent memory.
Publisher
Canadian Science Publishing
Subject
Physiology (medical),Pharmacology,General Medicine,Physiology
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献