Modification of Ca2+-handling in cardiomyocytes by redox sensitive mechanisms in response to ouabain

Author:

Saini-Chohan Harjot K.1,Hryshko Larry1,Xu Yan-Jun1,Dhalla Naranjan S.1

Affiliation:

1. Institute of Cardiovascular Sciences, St. Boniface Hospital Research and Department of Physiology, Faculty of Medicine, University of Manitoba, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada.

Abstract

We examined the role of redox-sensitive signal transduction mechanisms in modifying the changes in [Ca2+]iproduced by ouabain upon incubating adult rat cardiomyocytes with antioxidants or inhibitors of different protein kinases and monitoring alterations in fura-2 fluorescence. Ouabain increased basal [Ca2+]i, augmented the KCl-induced increase in [Ca2+]i, and promoted oxyradical production in cardiomyocytes. These actions of ouabain were attenuated by an oxyradical scavenging mixture (superoxide dismutase plus catalase), and the antioxidants (N-acetyl-l-cysteine and N-(2-mercaptoproprionyl)glycine). An inhibitor of MAP kinase (PD98059) depressed the ouabain-induced increase in [Ca2+], whereas inhibitors of tyrosine kinase (tyrphostin and genistein) and PI3 kinase (Wortmannin and LV294002) enhanced the ouabain-induced increase in [Ca2+]i. Inhibitors of protein kinase C (calphostin and bisindolylmalaimide) augmented the ouabain-induced increase in [Ca2+]i, whereas stimulation of protein kinase C by a phorbol ester (phorbol 12-myristate 13-acetate) depressed the action of ouabain. These results suggest that ouabain-induced inhibition of Na+–K+ATPase may alter the redox status of cardiomyocytes through the production of oxyradicals, and increase the activities of various protein kinases. Thus, these redox-sensitive signal transduction mechanisms involving different protein kinases may modify Ca2+-handling sites in cardiomyocytes and determine the magnitude of net increase in [Ca2+]iin response to ouabain.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3