Effects of tempol on endothelial and vascular dysfunctions and insulin resistance induced by a high-fat high-sucrose diet in the rat

Author:

Bourgoin Frédéric1,Bachelard Hélène1,Badeau Mylène1,Larivière Richard2,Nadeau André1,Pitre Maryse1

Affiliation:

1. Endocrinology and Nephrology Axis, CHUQ Research Center from the CHUL, Department of Medicine, Laval University, 2705 Laurier boulevard, Québec, QC G1V 4G2, Canada.

2. Division of Nephrology and Hypertension, CHUQ Research Center from the Hôtel-Dieu de Québec, Department of Medicine, Faculty of Medicine, Laval University, Québec, Canada.

Abstract

We investigated the effects of treatment with tempol (an antioxidant) on vascular and metabolic dysfunction induced by a high-fat high-sucrose (HFHS) diet. Rats were randomized to receive an HFHS or chow diet with or without tempol treatment (1.5 mmol·(kg body mass)−1·day−1) for 4 weeks. Blood pressure, heart rate, and blood flow were measured in the rats by using intravascular catheters and Doppler flow probes. Insulin sensitivity and vascular responses to insulin were assessed during a euglycemic–hyperinsulinemic clamp. In-vitro studies were performed to evaluate vascular reactivity and endothelial and inducible nitric oxide synthase (eNOS; iNOS) expression in vascular and muscle tissues. Endothelin, nitrotyrosine, and NAD(P)H oxidase expressions were determined in vascular tissues, and glucose transport activity and glucose transporter 4 (GLUT4) expression were examined in muscles. Tempol treatment was found to prevent alterations in insulin sensitivity, glucose transport activity, GLUT4 expression, and vascular reactivity, and to prevent increases in plasma insulin, blood pressure, and heart rate noted in the untreated HFHS-fed rats. These were associated with increased levels of eNOS expression in vascular and muscle tissues, but reductions in nitrotyrosine, endothelin, NAD(P)H oxidase, and iNOS expressions. Therefore, oxidative stress induced by a relatively short-term HFHS diet could contribute to the early development of vascular and metabolic abnormalities in rats.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3