Dexamethasone causes defective glucose-6-phosphate dehydrogenase dependent antioxidant barrier through endoglin in pregnant and nonpregnant rats

Author:

Badmus Olufunto O.12,Olatunji Lawrence A.1

Affiliation:

1. HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria.

2. Department of Public Health, Kwara State University, Malete, Nigeria.

Abstract

Glucocorticoid therapy has been associated with adverse cardiometabolic effects during pregnancy. Inflammation-mediated cardiac dysfunction, an independent risk factor for morbidity and mortality, has been linked to defective glucose-6-phosphate dehydrogenase (G6PD) dependent antioxidant defenses and increased endoglin expression. We therefore sought to investigate the effects of dexamethasone (DEX) on cardiac endoglin and G6PD-dependent antioxidant defense. Twenty-four rats were randomly assigned to nonpregnant (PRE(–)), DEX-exposed nonpregnant (PRE(–) + DEX), pregnant (PRE(+)), and DEX-exposed pregnant (PRE(+) + DEX) rats, respectively (n = 6 per group). PRE(–) and PRE(+) rats received vehicle (per oral (po)), while PRE(–) + DEX and PRE(+) + DEX groups were administered DEX (0.2 mg/kg po) between gestational days 14 and 19, respectively. Results showed that DEX caused increased cardiac pro-inflammatory markers (adenosine deaminase (ADA) activity, endoglin, vascular cell adhesion molecule-1 (VCAM-1), tissue injury markers (LDH, GGT, AST, ALT, and ALP), metabolic disturbances (elevated fasting plasma glucose, free fatty acid (FFA), lactate, cardiac FFA, and lactate) and depressed G6PD-dependent antioxidant defenses (G6PD activity, reduced glutathione/oxidized glutathione ratio, and nitric oxide) in pregnant and nonpregnant rats. The present study demonstrates that DEX led to increased cardiac endoglin and VCAM-1 that is accompanied by defective G6PD-dependent antioxidant defenses but not cardiac lipid accumulation in both pregnant and nonpregnant rats.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3