Depolarization of pacemaker potentials by caffeic acid phenethyl ester in interstitial cells of Cajal from the murine small intestine

Author:

Kim Jeong Nam12,Kim Byung Joo12

Affiliation:

1. Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea.

2. Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea.

Abstract

Interstitial cells of Cajal (ICCs) are pacemaker cells in the gastrointestinal (GI) tract and generate pacemaker potentials. In this study, we investigated the effects of caffeic acid phenethyl ester (CAPE) on the pacemaker potentials of ICCs from the mouse small or large intestine. Using the whole-cell patch-clamp configuration, we found that CAPE depolarized the pacemaker potentials of cultured ICCs from the murine small intestine in a dose-dependent manner. The estrogen receptor (ER) β antagonist PHTPP completely inhibited CAPE-induced depolarization, but the ERα antagonist BHPI did not. Intracellular GDP-β-S and pretreatment with Ca2+-free solution or thapsigargin also blocked CAPE-induced depolarization. To investigate the mechanisms of CAPE-mediated depolarization of ICCs, we used the nonselective cation channel (NSCC) inhibitor flufenamic acid, the Cl channel blocker, mitogen-activated protein kinase (MAPK) inhibitors PD98059, SB203580, or SP600125, and PI3 kinase inhibitor LY294002. All inhibitors blocked the CAPE-induced pacemaker potential depolarization of ICCs. These results suggest that CAPE induces pacemaker potential depolarization through ERβ in a G protein, NSCC, Cl channel, MAPK- and PI3 kinase dependent manner via intracellular and extracellular Ca2+ regulation in the murine small intestine. CAPE may therefore modulate GI motility by acting on ICCs in the murine small intestine.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3