Monoamine oxidases are novel sources of cardiovascular oxidative stress in experimental diabetes

Author:

Sturza Adrian12,Duicu Oana M.12,Vaduva Adrian3,Dănilă Maria D.12,Noveanu Lavinia12,Varró András4,Muntean Danina M.12

Affiliation:

1. Department of Pathophysiology, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 14, Tudor Vladimirescu st., 300173 Timişoara, Romania.

2. Center for Translational Research and Systems Medicine, “Victor Babeş” University of Medicine and Pharmacy, Timişoara, Romania.

3. Department of Morphopathology, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, Timişoara, Romania.

4. Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.

Abstract

Diabetes mellitus (DM) is widely recognized as the most severe metabolic disease associated with increased cardiovascular morbidity and mortality. The generation of reactive oxygen species (ROS) is a major event causally linked to the development of cardiovascular complications throughout the evolution of DM. Recently, monoamine oxidases (MAOs) at the outer mitochondrial membrane, with 2 isoforms, MAO-A and MAO-B, have emerged as novel sources of constant hydrogen peroxide (H2O2) production in the cardiovascular system via the oxidative deamination of biogenic amines and neurotransmitters. Whether MAOs are mediators of endothelial dysfunction in DM is unknown, and so we studied this in a streptozotocin-induced rat model of diabetes. MAO expression (mRNA and protein) was increased in both arterial samples and hearts isolated from the diabetic animals. Also, H2O2 production (ferrous oxidation – xylenol orange assay) in aortic samples was significantly increased, together with an impairment of endothelium-dependent relaxation (organ-bath studies). MAO inhibitors (clorgyline and selegiline) attenuated ROS production by 50% and partially normalized the endothelium-dependent relaxation in diseased vessels. In conclusion, MAOs, in particular the MAO-B isoform, are induced in aortas and hearts in the streptozotocin-induced diabetic rat model and contribute, via the generation of H2O2, to the endothelial dysfunction associated with experimental diabetes.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3