Affiliation:
1. Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
Abstract
In this study, we studied the effect of lipopolysaccharide from Rhodobacter sphaeroides (LPS-RS), an inhibitor of Toll-like receptor 4 (TLR4), in LPS-induced acute lung injury (ALI). Male Sprague–Dawley rats were treated with LPS-RS (0.1 mg/kg body mass, by intraperitoneal (i.p.) injection) 1 h before LPS injection (10 mg/kg, i.p.). Bronchoalveolar lavage fluid (BALF) and lung tissues were collected 24 h later to determine total and differential cell count, total protein content, levels of lactate dehydrogenase (LDH), histopathological changes, markers of oxidative stress, and mRNA expression of the inhibitory protein nuclear factor kappaB-α (NFκBIA) and TLR4. Additionally, rings of pulmonary artery were isolated for measuring vascular reactivity. LPS-induced ALI was indicated by increases in total and differential cell count, total protein, and LDH in BALF, and increased lung levels of malondialdehyde (MDA), as well as decreased activity of reduced glutathione (GSH) and superoxide dismutase (SOD). Moreover, LPS increased pulmonary artery contraction in response to phenylephrine (PE). Additionally, LPS downregulated mRNA expression of NFκBIA and upregulated mRNA expression of TLR4. LPS caused a marked inflammation in the lung tissue, with tubercular granuloma and numerous neutrophils. Pretreatment with LPS-RS protected against LPS-induced ALI by decreasing total and differential cell count, total protein, and LDH in BALF, and increased pulmonary GSH content and SOD activity without affecting MDA content. Additionally, it decreased the elevated PE-induced pulmonary artery contraction. LPS-RS upregulated mRNA expression of NFκBIA and downregulated mRNA expression of TLR4. Moreover, LPS-RS prevented inflammation in lung tissues. In conclusion, pretreatment with LPS-RS protects against LPS-induced ALI in rats through its anti-inflammatory effects, possibly by decreasing the mRNA expression of TLR4 and increasing that of NFκBIA.
Publisher
Canadian Science Publishing
Subject
Physiology (medical),Pharmacology,General Medicine,Physiology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献