Local insulin application on the carotid artery inhibits neointima formation

Author:

Chiang Simon1,Breen Danna M.1,Guo June1,Mori Yusaku12,Giacca Adria134

Affiliation:

1. Department of Physiology, Medical Science Building, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada.

2. Division of Diabetes, Metabolism and Endocrinology, Showa University, Shinagawa, Tokyo 142-0064, Japan.

3. Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.

4. Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.

Abstract

Anti-mitogenic agents currently used to prevent restenosis in drug-eluting stents delay re-endothelialization. Delayed re-endothelialization is now considered as the main cause of late stent thrombosis with drug-eluting stents, which emphasizes the need for new treatments. We have shown that systemic insulin treatment decreases neointimal growth and accelerates re-endothelialization after arterial injury in a rat model of restenosis. However, systemic insulin treatment cannot be given to non-diabetic individuals because of the risk of hypoglycemia. Thus, we investigated whether local insulin treatment is also effective in reducing neointimal growth after arterial injury. Rats were given local vehicle or local insulin delivered via Pluronic gel applied around the carotid artery immediately following balloon injury. Plasma glucose and systemic insulin levels were not affected by local insulin treatment. Insulin decreased intimal area at 28 days (P < 0.05) and also inhibited vascular smooth muscle cell migration by 60% at 4 days (P < 0.05). NPH (a longer-lasting insulin) also decreased neointimal area. These results indicate that local insulin treatment can lead to decreased restenosis, suggesting a protective vascular effect of insulin in vivo and that local insulin treatment, possibly via insulin-eluting stents, may be clinically relevant.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3