Is there a role of inducible nitric oxide synthase activation in the delayed antiarrhythmic effect of sodium nitrite?

Author:

Demeter-Haludka Vivien1,Juhász László1,Kovác Mária1,Gardi János2,Végh Ágnes1

Affiliation:

1. Department of Pharmacology and Pharmacotherapy, University of Szeged, Albert-Szent Györgyi Medical Centre, Szeged H-6720, Hungary.

2. First Department of Internal Medicine, University of Szeged, Albert-Szent Györgyi Medical Centre, Szeged H-6720, Hungary.

Abstract

This study aimed to examine whether inducible nitric oxide synthase (iNOS) plays a role in the delayed antiarrhythmic effect of sodium nitrite. Twenty-one dogs were infused intravenously with sodium nitrite (0.2 μmol·kg–1·min–1) for 20 min, either in the absence (n = 12) or in the presence of the iNOS inhibitor S-(2-aminoethyl)-isothiourea (AEST) (total dose 2.0 mg·kg–1 i.v., n = 9). Control dogs (n = 12) were given saline. Twenty-four hours later, all of the dogs were subjected to a 25 min period occlusion of the left anterior descending coronary artery followed by rapid reperfusion. Dogs treated with AEST and nitrite received again AEST prior to the occlusion. Compared with the controls, sodium nitrite markedly reduced the number of ectopic beats, the number and incidence of ventricular tachycardia, and the incidence of ventricular fibrillation during occlusion and increased survival (0% versus 50%) from the combined ischaemia and reperfusion insult. Although AEST completely inhibited iNOS activity, the nitrite-induced increase in NO bioavailability during occlusion was not substantially modified. Furthermore, AEST attenuated but did not completely abolish the antiarrhythmic effect of nitrite. The marked delayed antiarrhythmic effect of sodium nitrite is not entirely due to the activation of iNOS; other mechanisms may certainly play a role.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3