Stimulation of calcium-sensing receptor increases biochemical H+-ATPase activity in mouse cortex and outer medullary regions

Author:

Casare Fernando1,Milan Daiane1,Fernandez Ricardo1

Affiliation:

1. Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Centro Politécnico s/n., PO Box 19031, Jardim das Américas, Curitiba, Paraná, CEP 81531-990, Brasil.

Abstract

The aim of this project was to investigate the interaction between the calcium-sensing receptor (CaSR) and proton extrusion by the V-ATPase and gastric-like isoform of the H+/K+-ATPase in the mouse nephron. Biochemical activity of H+- ATPases was analysed using a partially purified membrane fraction of mouse cortex and outer medullary region. The V-ATPase activity (sensitive to 10−7 mol·L−1 bafilomycin) from the cortical and outer medullary region was significantly stimulated by increasing the [Formula: see text] (outside Ca2+), in a dose-dependent pattern. Gastric H+/K+-ATPase activity (sensitive to 10−5 mol·L−1 Schering 28080) was also sensitive to changes in [Formula: see text] levels. A significant increase in V-ATPase activity was also observed when CaSR was stimulated with agonists such as 300 μmol·L−1 Gd3+ and 200 μmol·L−1 neomycin, both in the cortex and outer medulla. The cortical and outer medullary gastric H+/K+-ATPase activity was also stimulated by Gd3+ and neomycin. Finally, cortical V-ATPase activity was significantly stimulated by 10−9 mol·L−1 angiotensin II, and the stimulation of CaSR in the presence of angiotensin significantly enhanced this effect, suggesting that an interaction in the intracellular signaling pathways is involved. In summary, CaSR stimulation enhances the biochemical activity of V-ATPase and gastric H+/K+-ATPase in both the cortical and outer medullary region of mouse kidney.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3