Protective effects and plausible mechanisms of antler-velvet polypeptide against hydrogen peroxide induced injury in human umbilical vein endothelial cells

Author:

Zhu Wenhe1,Wang Huiyan1,Zhang Wei1,Xu Na1,Xu Junjie1,Li Yan1,Liu Wensen2,Lv Shijie1

Affiliation:

1. Department of Biochemistry, Jilin Medical University, Jilin, Jilin 132013, P.R. China.

2. Institute of Military Veterinary Sciences, Academy of Military Medical Sciences, Changchun, Jilin 130117, P.R. China.

Abstract

Antler velvet polypeptide (VAP) is a prominent bioactive component of antler velvet. Whereas uncharacterized crude extracts have typically been used in pharmacological studies, in this study, the velvet polypeptide was isolated and purified by acid water extraction, ethanol precipitation, ammonium sulfate fractionation and precipitation, and chromatography, progressively. Human umbilical vein endothelial cells (HUVECs) were induced with H2O2 followed purified polypeptide treatment. Cell viability was evaluated by MTT assay. The apoptosis of cells was detected by fluorescence microscopy and flow cytometry. A cell analyzer was used to measure the mitochondrial membrane potential. The intracellular reactive oxygen species (ROS) levels were determined by flow cytometry. Oxidative stress related biochemical parameters were detected, and the expression of apoptosis-related proteins was examined by Western blot analysis. The results indicated that a 7.0 kDa polypeptide (VAP II) was isolated from antler velvet. VAP II enhanced cell viability, decreased cell apoptosis, reversed depolarization of mitochondrial membrane potential, decreased ROS levels, inhibited oxidative stress, and regulated the downstream signaling apoptotic cascade expression caused by H2O2. The protective effects of VAP II on HUVECs suggests a potential strategy for the treatment of cardiovascular disease.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3