The anti-arrhythmic effect of chronic intermittent hypobaric hypoxia in rats with metabolic syndrome induced with fructose

Author:

Zhou Jing-Jing12,Ma Hui-Jie12,Liu Yan3,Guan Yue12,Maslov Leonid N.4,Li De-Pei5,Zhang Yi12

Affiliation:

1. Department of Physiology, Hebei Medical University, Shijiazhuang 050017, China.

2. Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, P.R. China.

3. Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China.

4. Institute of Cardiology of the Siberian Branch of the Russian Academy of Medical Sciences, Tomsk 634012, Russia.

5. Department of Critical Care, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA.

Abstract

This study investigated the anti-arrhythmic effects from chronic intermittent hypobaric hypoxia (CIHH) and the cellular mechanisms in rats with metabolic syndrome. Male Sprague–Dawley rats were randomly distributed among the control, fructose-fed (fed with 10% fructose in the drinking water to induce metabolic syndrome), CIHH (42 days of hypobaric hypoxia treatment simulating an altitude of 5000 m a.s.l.: PB = 404 mm Hg, PO2 = 84 mm Hg, 6 h per day), and the CIHH plus fructose (CIHH-F) groups. In anesthetized rats, the arrhythmia score was determined after 30 min of cardiac ischemia followed by 120 min of reperfusion. Action potentials (AP) were recorded from isolated ventricular papillary muscles. The arrhythmia score was much lower in CIHH-F rats than in the fructose-fed rats. Under basic conditions, AP duration (APD) was significantly shortened in fructose-fed rats, but obviously prolonged in CIHH rats compared with that of the control rats. During ischemia, the AP amplitude, the maximal rate of rise of phase 0, APD, and resting potential, were lower in the control, fructose-fed, and CIHH-F groups, but were not changed in the CIHH rats. The lower AP during ischemia did not recover after washout for the fructose-fed rats. In conclusion, CIHH protects the heart against ischemia–reperfusion induced arrhythmia in rats with metabolic syndrome. This effect of CIHH is possibly related to baseline prolongation of the AP and attenuation of AP reduction during ischemia–reperfusion.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3