Affiliation:
1. Department of Physiology, University College Cork, Cork, Ireland.
Abstract
The shear-stress sensor function of vascular glycocalyx heparan sulphate and hyaluronic acid was investigated in vivo by assessing flow-mediated dilation before and after their removal. Heparinase III exposure (100 mU·mL−1 for 20 min;n = 6) did not significantly affect flow-mediated dilation of the iliac, from 0.42 ± 0.08 mm (mean ± SEM) to 0.34 ± 0.07 mm after (P = 0.12; paired Student’s t test) for a statistically similar increase in shear stress; 18.24 ± 4.2 N·m−2 for the control and 15.8 ± 3.6 N·m−2 for the heparinase III experiment (P = 0.18). Hyaluronidase exposure (0.14–1.4 mg·mL−1 for 20 min; n = 8) also did not significantly reduce flow-mediated dilation of the iliac, which averaged 0.39 ± 0.08 mm before and 0.38 ± 0.09 mm after (P = 0.11) for a statistically similar increase in shear stress; 11.90 ± 3.20 N·m−2 for the control and 9.8 ± 3.33 N·m−2 for the hyaluronidase experiment (P = 0.88). Removal of both heparan sulphate and hyaluronic acid was confirmed using immunohistochemistry. Neither the heparan sulphate nor the hyaluronic acid components of the glycocalyx mediate shear-stress-induced vasodilation in conduit arteries in vivo.
Publisher
Canadian Science Publishing
Subject
Physiology (medical),Pharmacology,General Medicine,Physiology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献