Long-acting PDE5 inhibitor tadalafil prevents early doxorubicin-induced left ventricle diastolic dysfunction in juvenile mice: potential role of cytoskeletal proteins

Author:

Nagiub Mohamed1,Filippone Scott2,Durrant David2,Das Anindita2,Kukreja Rakesh C.2

Affiliation:

1. Division of Pediatric Cardiology, Department of Pediatrics at Children’s Hospital of Richmond, Virginia Commonwealth University, Richmond, VA 23298, USA.

2. Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, USA.

Abstract

The chemotherapeutic use of doxorubicin (Dox) is hindered due to the development of irreversible cardiotoxicity. Specifically, childhood cancer survivors are at greater risk of Dox-induced cardiovascular complications. Because of the potent cardioprotective effect of phosphodiesterase 5 (PDE5) inhibitors, we examined the effect of long-acting PDE5 inhibitor tadalafil (Tada) against Dox cardiotoxicity in juvenile mice. C57BL/6J mice (6 weeks old) were treated with Dox (20 mg/kg, i.v.) and (or) Tada (10 mg/kg daily for 14 days, p.o.). Cardiac function was assessed by echocardiography following 5 and 10 weeks after Dox treatment. The expression of cardiac proteins was examined by Western blot analysis. Dox treatment caused diastolic dysfunction in juvenile mice indicated by increasing the E/E’ (early diastolic myocardial velocity to early tissue Doppler velocity) ratio as compared with control at both 5 and 10 weeks after Dox treatment. Co-treatment of Tada and Dox preserved left ventricular diastolic function with reduction of E/E’. Dox treatment decreased the expression of SERCA2 and desmin in the left ventricle; however, only desmin loss was prevented with Tada. Also, Dox treatment increased the expression of myosin heavy chain (MHCβ), which was reduced by Tada. We propose that Tada could be a promising new therapy for improving cardiac function in survivors of childhood cancer.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3