Protective mechanisms of melatonin against hydrogen-peroxide-induced toxicity in human bone-marrow-derived mesenchymal stem cells

Author:

Mehrzadi Saeed1,Safa Majid23,Kamrava Seyed Kamran4,Darabi Radbod5,Hayat Parisa2,Motevalian Manijeh1

Affiliation:

1. Razi Drug Research Center, Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.

2. Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.

3. Department of Hematology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.

4. ENT and Head & Neck Research Center, Hazrate Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran.

5. Center for Stem Cell and Regenerative Medicine (CSCRM), Brown Foundation Institute of Molecular Medicine (IMM), University of Texas Health Science Center at Houston, Houston, TX 77030, USA.

Abstract

Many obstacles compromise the efficacy of bone marrow mesenchymal stem cells (BM-MSCs) by inducing apoptosis in the grafted BM-MSCs. The current study investigates the effect of melatonin on important mediators involved in survival of BM-MSCs in hydrogen peroxide (H2O2) apoptosis model. In brief, BM-MSCs were isolated, treated with melatonin, and then exposed to H2O2. Their viability was assessed by MTT assay and apoptotic fractions were evaluated through Annexin V, Hoechst staining, and ADP/ATP ratio. Oxidative stress biomarkers including ROS, total antioxidant power (TAP), superoxide dismutase (SOD) and catalase (CAT) activity, glutathione (GSH), thiol molecules, and lipid peroxidation (LPO) levels were determined. Secretion of inflammatory cytokines (TNF-α and IL-6) were measured by ELISA assay. The protein expression of caspase-3, Bax, and Bcl-2, was also evaluated by Western blotting. Melatonin pretreatment significantly increased viability and decreased apoptotic fraction of H2O2-exposed BM-MSCs. Melatonin also decreased ROS generation, as well as increasing the activity of SOD and CAT enzymes and GSH content. Secretion of inflammatory cytokines in H2O2-exposed cells was also reduced by melatonin. Expression of caspase-3 and Bax proteins in H2O2-exposed cells was diminished by melatonin pretreatment. The findings suggest that melatonin may be an effective protective agent against H2O2-induced oxidative stress and apoptosis in MSC.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3