Gestational postprandial insulin sensitivity in the Sprague Dawley rat: the putative role of hepatic insulin sensitizing substance in glucose partitioning in pregnancy

Author:

Lovat Nicole E.J.12,Legare Dallas J.3,Gieni Randall S.3,Lautt W. Wayne13

Affiliation:

1. University of Manitoba College of Medicine, Max Rady Faculty of Health Sciences, 119 Main Street South, Winnipeg, MB R3E 3P5, Canada.

2. Providence Medical Group, P.O. Box 421, Liberty Lake, WA 99019-0421, USA.

3. SciMar Ltd., 119 Main Street South, Dauphin, MB R7N 1K4, Canada.

Abstract

Pregnancy requires adaptation of maternal insulin sensitivity. In the fed state, a pulse of insulin stimulates glucose uptake and nutrient energy storage via insulin-dependent as well as hepatic insulin sensitizing substance (HISS)-dependent action. HISS is released by the liver in the fed state in the presence of signals integrated through the liver and a pulse of insulin. HISS promotes glucose storage as glycogen in heart, kidney, and skeletal muscle but not in gut, liver, or adipose tissue. HISS is also responsible for the vasodilatory action previously attributed to insulin. The rapid insulin sensitivity test (RIST), a dynamic euglycemic clamp, can quantitate both HISS-dependent and insulin-dependent glucose uptake. The RIST was used to characterize postprandial insulin sensitivity in the Sprague Dawley rat and the changes in the partitioning of nutrient energy throughout gestation. Early pregnancy demonstrated increased insulin sensitivity attributable to HISS-dependent glucose uptake with unchanged insulin-dependent glucose uptake, preserved plasma insulin concentration, and reduced plasma triglyceride concentration compared to the virgin. In late pregnancy, there was reduced HISS-dependent and insulin-dependent glucose uptake accompanied by increased plasma insulin and triglyceride concentration compared to the virgin. These results suggest an important role for HISS in glucose partitioning in pregnancy.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3