Graphene-based drug delivery systems in tissue engineering and nanomedicine

Author:

Lakshmanan Rajesh11,Maulik Nilanjana11

Affiliation:

1. Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health, Farmington, CT 06030, USA.

Abstract

The time and dosage form of graphene derivatives have been found to determine therapeutic and toxic windows in several cell lines and preclinical models. The enhanced biological action of graphene derivatives is made possible by altering the chemistry of native materials via surface conjugation, or by changing the oxidation state. The high level of chemical reactivity vested in the planar structure of graphene can be used to load various drugs and biomolecules with maximum radical scavenging effect. The integration of graphene and polymers brings electrical conductivity to scaffolds, making them ideal for cardiac or neuronal tissue engineering. Drawbacks associated with graphene-based materials for biomedical applications include defect-free graphene formation and heteroatom contamination during synthesis process; reduced availability of sp2 hybridized carbon centers due to serum proteins masking; and poor availability of data pertaining to in vivo clearance of graphene-based formulations. Personalized medicine is an emerging area of alternative treatments, which in combination with graphene-based nanobiomaterials, has revolutionary potential for the development of individualized nanocarriers to treat highly challenging diseases.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3