miR-142-5p and miR-212-5p cooperatively inhibit the proliferation and collagen formation of cardiac fibroblasts by regulating c-Myc/TP53INP1

Author:

Wang Zhiqian1,Fu Mingming1,Li Yongjun2

Affiliation:

1. Department of Geriatric Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang; 050000, Hebei Province, China.

2. Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang; 050000, Hebei Province, China.

Abstract

The aim of this study was to investigate the effect and mechanism of miR-142-5p/212-5p on the proliferation and collagen formation of cardiac fibroblasts (CFs) after myocardial infarction (MI). The mouse MI model was established by ligation of the left anterior descending coronary artery. CFs were induced by transforming growth factor-beta 1 (TGF-β1) or angiotensin (Ang II). The molecule expressions were measured by qRT-PCR and Western blot. CF proliferation was detected by an MTT assay. The effect of miR-142-5p/212-5p on the luciferase activity of c-Myc 3′UTR was assessed by the luciferase reporter assay. miR-142-5p and miR-212-5p were downregulated in cardiac tissues of MI mice and in TGF-β1- or Ang II-induced CFs, while the protein levels of collagen I and III were upregulated. Moreover, simultaneous overexpression of miR-142-5p/212-5p inhibited the proliferation and collagen formation of TGF-β1- or Ang II-stimulated CFs to a greater extent than either miR-142-5p or miR-212-5p overexpression alone. MiR-142-5p/212-5p targeted c-Myc and negatively regulated its expression. The effects of miR-142-5p/212-5p overexpression on the TP53INP1 protein level and the proliferation and collagen formation of CFs were reversed by c-Myc overexpression. Moreover, overexpression of miR-142-5p/212-5p improved cardiac function and collagen formation of MI mice. Overexpression of miR-142-5p/212-5p cooperatively suppresses the proliferation and collagen formation after MI by regulating c-Myc/TP53INP1.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3