Relaxant effect of atorvastatin on isolated rat gastric fundus strips: implications for Ca2+-signalling mechanisms

Author:

Kaleli-Durman Deniz1,Alp-Yıldırım F. İlkay1,Özdemir Osman12,Uydeş-Doğan B. Sönmez1

Affiliation:

1. Department of Pharmacology, Faculty of Pharmacy, Istanbul University, 34116, Beyazıt, Istanbul, Turkey.

2. Department of Pharmacology, Faculty of Health Sciences, Cyprus International University, Lefkoşa, North Cyprus, Cyprus.

Abstract

Statins are determined to have various pleiotropic effects apart from their lipid-lowering properties. Herein, we investigated the direct effects of atorvastatin on gastric smooth muscle tone. Atorvastatin effectively relaxed isolated rat gastric fundus strips precontracted with acetylcholine, potassium chloride, and serotonin. Incubation of the strips with nitric oxide synthase inhibitor, l-NOARG (10−4 M, 20 min), l-type voltage-operated Ca2+ channel (VOCC) blocker, nifedipine (10−6 M, 30 min), KATP channel blocker, glibenclamide (10−5 M, 30 min), or precursor of cholesterol, mevalonate (10−2 M, 45 min) did not change the relaxations to atorvastatin. However, pretreatment of fundus strips with atorvastatin (3×10−5–3×10−4 M, 30 min) inhibited the contractions to calcium chloride (10−4–10−1 M), acetylcholine (10–4 M), and caffeine (20 mM) in the calcium-free medium. Moreover, atorvastatin reduced the contractions induced by sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitor, cyclopiazonic acid (10−7–3×10−5 M). The current study demonstrated that atorvastatin produces an acute relaxant effect on gastric fundus strips, which appears to be mediated by several Ca2+-signalling mechanisms such as the blockade of l-type VOCC-independent Ca2+ entry, decrease in smooth muscle Ca2+ sensitivity, inhibition of IP3- and ryanodine-sensitive intracellular stores to mediate Ca2+ release, as well as the activation of SERCA. This acute relaxing effect seems unlikely to be related with nitric oxide, KATP channels, and the mevalonate pathway.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3