Preconditioning with morphine protects hippocampal CA1 neurons from ischemia–reperfusion injury via activation of the mTOR pathway

Author:

Arabian Maedeh1,Aboutaleb Nahid2,Soleimani Mansoureh3,Ajami Marjan4,Habibey Rouhollah5,Rezaei Yousef6,Pazoki-Toroudi Hamidreza2

Affiliation:

1. Rajaie Cardiovascular, Medical, and Research Centre, Iran University of Medical Sciences, Tehran, Iran.

2. Physiology Research Center, Physiology Department, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.

3. Cellular and Molecular Research Centre, Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.

4. Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

5. Department of Neuroscience and Brain Technologies-Istituto Italiano di Technologia, Via Morego, 30, 16163 Genova, Italy.

6. Heart Valve Disease Research Center, Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran.

Abstract

The signaling pathway of chronic morphine treatment to prevent neuronal damage following transient cerebral ischemia is not clear. In this study, we examined the role of mammalian target of rapamycin (mTOR) to identify the neuroprotective effects of chronic morphine preconditioning on the hippocampus following ischemia–reperfusion (I/R) injury. Morphine was administered for 5 days, twice a day, before inducing I/R injury. The possible role of mTOR was evaluated by the injection of rapamycin (5 mg/kg body weight, by intraperitoneal injection) before I/R was induced. The passive avoidance test was used to evaluate memory performance. Neuronal density and apoptosis were measured in the CA1 region, 72 h after I/R injury. The expressions of mTOR and phosphorylated mTOR (p-mTOR), as well as superoxide dismutase (SOD) activity were determined 24 h after I/R injury. Chronic morphine treatment attenuated apoptosis and neuronal loss in the hippocampus after I/R injury, which led to improvement in memory (P < 0.05 vs. untreated I/R) and increase in the expression of p-mTOR (P < 0.05 vs. untreated I/R) and SOD activity (P < 0.05 vs. untreated I/R) in the hippocampus. Pretreatment with rapamycin abolished all the above-mentioned protective effects. These results describe novel findings whereby chronic morphine preconditioning in hippocampal CA1 neurons is mediated by the mTOR pathway, and through increased phosphorylation of mTOR can alleviate oxidative stress and apoptosis, and eventually protect the hippocampus from I/R injury.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3