N-acetyl-seryl-aspartyl-lysyl-proline treatment protects heart against excessive myocardial injury and heart failure in mice

Author:

Peng Hongmei1,Xu Jiang1,Yang Xiao-Ping1,Kassem Kamal M.2,Rhaleb Imane A.1,Peterson Ed3,Rhaleb Nour-Eddine14

Affiliation:

1. Hypertension and Vascular Research Division, Department of Internal Medicine, Detroit, MI 48202, USA.

2. Department of Internal Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45219, USA.

3. Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI 48202, USA.

4. Department of Physiology, Wayne State University, Detroit, MI 48201, USA.

Abstract

Myocardial infarction (MI) in mice results in cardiac rupture at 4–7 days after MI, whereas cardiac fibrosis and dysfunction occur later. N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) has anti-inflammatory, anti-fibrotic, and pro-angiogenic properties. We hypothesized that Ac-SDKP reduces cardiac rupture and adverse cardiac remodeling, and improves function by promoting angiogenesis and inhibiting detrimental reactive fibrosis and inflammation after MI. C57BL/6J mice were subjected to MI and treated with Ac-SDKP (1.6 mg/kg per day) for 1 or 5 weeks. We analyzed (1) intercellular adhesion molecule-1 (ICAM-1) expression; (2) inflammatory cell infiltration and angiogenesis; (3) gelatinolytic activity; (4) incidence of cardiac rupture; (5) p53, the endoplasmic reticulum stress marker CCAAT/enhancer binding protein homology protein (CHOP), and cardiomyocyte apoptosis; (6) sarcoplasmic reticulum Ca2+ ATPase (SERCA2) expression; (7) interstitial collagen fraction and capillary density; and (8) cardiac remodeling and function. Acutely, Ac-SDKP reduced cardiac rupture, decreased ICAM-1 expression and the number of infiltrating macrophages, decreased gelatinolytic activity, p53 expression, and myocyte apoptosis, but increased capillary density in the infarction border. Chronically, Ac-SDKP improved cardiac structures and function, reduced CHOP expression and interstitial collagen fraction, and preserved myocardium SERCA2 expression. Thus, Ac-SDKP decreased cardiac rupture, ameliorated adverse cardiac remodeling, and improved cardiac function after MI, likely through preserved SERCA2 expression and inhibition of endoplasmic reticulum stress.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3