Sex-specific vascular responses of the rat aorta: effects of moderate term (intermediate stage) streptozotocin-induced diabetes

Author:

Han Xiaoyuan1,Shaligram Sonali1,Zhang Rui1,Anderson Leigh2,Rahimian Roshanak1

Affiliation:

1. Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, 3601 Pacific Ave., Stockton, CA 95211, USA.

2. Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94115, USA.

Abstract

Hyperglycemia affects male and female vascular beds differently. We have previously shown that 1 week after the induction of diabetes with streptozotocin (STZ), male and female rats exhibit differences in aortic endothelial function. To examine this phenomenon further, aortic responses were studied in male and female rats 8 weeks after the induction of diabetes (intermediate stage). Endothelium-dependent vasodilation (EDV) to acetylcholine (ACh) was measured in phenylephrine (PE) pre-contracted rat aortic rings. Concentration response curves to PE were generated before and after L-NAME, a nitric oxide synthase (NOS) inhibitor. Furthermore, mRNA expression of endothelial nitric oxide synthase (eNOS) and NADPH oxidase subunit (Nox1) were determined. At 8 weeks, diabetes impaired EDV to a greater extent in female than male aortae. Furthermore, the responsiveness to PE was significantly enhanced only in female diabetic rats, and basal NO, as indicated by the potentiation of the response to PE after L-NAME, was reduced in female diabetic rat aortae to the same levels as in males. In addition, eNOS mRNA expression was decreased, while the Nox1 expression was significantly enhanced in diabetic female rats. These results suggest that aortic function in female diabetic rats after 8 weeks exhibits a more prominent impairment and that NO may be involved.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3