Author:
Petersen Lars Chr.,Degn Hans,Nicholls Peter
Abstract
1. Coupled, cytochrome-c-depleted ('stripped') rat liver mitochondria reducing oxygen in the presence of exogenous cytochrome c, with succinate or ascorbate as substrates, show marked declines in the steady-state reduction of cytochrome c in excess oxygen on addition of uncouplers. Calculated ratios of maximal turnover in the uncoupled state and in the energized state for the cytochrome c oxidase (EC 1.9.3.1) reaction lie between 3 and 6, as obtained with reconstituted oxidase-containing vesicles. The succinate-cytochrome c reductase activity in such mitochondria shows a smaller response to uncoupler than that of the oxidase.2. The respiration rates of uncoupled mitochondria oxidizing ascorbate in the presence of added cytochrome c follow a Michaelis–Menten relationship with respect to oxygen concentration, in accordance with the pattern found previously with the solubilized oxidase. But succinate oxidation tends to give nonlinear concave-upward double-reciprocal plots of respiration rate against oxygen concentration, in accordance with the pattern found previously with intact uncoupled mitochondria.3. From simultaneous measurements of cytochrome c steady-state reduction, respiration rate, and oxygen concentration during succinate oxidation under uncoupled conditions it is found that at full reduction of cytochrome c, apparent Km for oxygen is 0.9 μM and the maximal oxidase (aa3) turnover is 400 s−1 (pH 7.4, 30 °C).4. The redox state of cytochrome c in uncoupled systems reflects a simple steady state; the redox state of cytochrome c in energized systems tends towards an equilibrium condition with the terminal cytochrome a3, whose apparent potential under these conditions is more negative than that of cytochrome c.
Publisher
Canadian Science Publishing
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献