Author:
Bonen Arend,Blewett Cameron,McDermott John C.,Elder Geoffrey C. B.
Abstract
Nonexercising muscles appear to be metabolically active during exercise. Animal models for this purpose have not been established. However, we have been able to teach animals to run on their forelimbs while their hindlimbs are suspended above the treadmill with no visible limb movement. To document that indeed this mode of exercise does not provoke additional muscle activity, we have compared the levels of neural activation of the soleus and plantaris muscles using a computer analysis of the electromyographic interference pattern, recorded from bipolar fine wire electrodes implanted across each muscle. Via computer analyses of the electromygraphic interference patterns the frequencies and amplitudes of motor unit action potentials were obtained. The data were sampled during 20 s of every minute of observation. Comparisons were made in four conditions: (i) resting on the treadmill while bearing weight on the hindlimbs (normal rest), (ii) running on the treadmill (15 m/min, 8% grade) on all four limbs (normal exercise), (iii) resting while the hindlimbs were suspended in a harness above the treadmill (suspended rest), and (iv) exercising with the forelimbs (15 m/min, 8% grade) while the hindlimbs were suspended above the treadmill (suspended exercise). All four experimental conditions were carried out for 90 min each and were performed by each animal. The results clearly show that muscle activities (frequencies and amplitudes), when the hindlimbs are suspended above the treadmill, at rest or during exercise, are lower than the activities in these same muscles when the animals are at rest, supporting only their body weight. Activities in the same muscles during exercise were from 300 to 2000% greater than during hindlimb suspension. Despite these large differences in muscle activities, comparable quantities of glycogen are lost from these hindlimb suspended (nonexercising) muscles during exercise and when these same muscles are performing the exercise. The physiologic data indicate that suspending the hindlimbs of a rat during forelimb exercise provides a convenient animal model for the study of nonexercising muscle during exercise. In fact the soleus and plantaris activities during suspended exercise are less than during normal rest.Key words: soleus, plantaris, nonexercising muscle, electromyography.
Publisher
Canadian Science Publishing
Subject
Physiology (medical),Pharmacology,General Medicine,Physiology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献