Effect of freeze–thaw cycling on the behaviour of reinforced concrete beams strengthened in flexure with fibre reinforced polymer sheets

Author:

Green Mark F,Dent Aaron J.S,Bisby Luke A

Abstract

Externally bonded fibre reinforced polymer (FRP) plates and sheets for strengthening and rehabilitating existing reinforced concrete structures have recently received a great deal of attention within the civil engineering community. Many tests have shown the benefits of FRP, but more information is required on their behaviour in cold regions. Twenty-seven small-scale concrete beams (100 mm × 150 mm × 1220 mm) were strengthened with FRP in flexure (and in some cases also in shear), subjected to up to 200 freeze–thaw cycles, and tested to failure in four-point bending. Test results were compared with those predicted by theoretical models and reasonable agreement between the tests and the models was obtained. Current design guidelines for FRP-strengthened beams were compared against the test data and were found to be adequate for the artificially aged beams. The test data also indicated that no significant damage to the glass or carbon FRP-strengthened concrete beams had occurred because of freeze–thaw cycling.Key words: concrete, rehabilitation, fibre reinforced polymers, FRP, beams, freeze–thaw, cold region engineering, flexure, external strengthening.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3