A dynamic simulation of loblolly pine (Pinustaeda L.) seedling establishment based upon carbon and water balances

Author:

Blake John I.,Hoogenboom Gerrit

Abstract

A generalized simulation model, ROOTSIMU, which utilizes dynamic carbon and water balance algorithms, was modified to simulate loblolly pine (Pinustaeda L.) seedling growth and water uptake for a 100-day transplant period. The modifications included an allowance for time-dependent changes in photosynthesis and carbon allocation. Heat sums were used to control the initiation of growth. Additional compartments were added to separate the physiological functions of suberized and nonsuberized roots and secondary woody tissues. Values used to initialize the model were largely derived from the published literature. The predicted results of a simulation run using 1985 and 1986 weather data are reported. Changes in simulated plant water potential were closely related to periods of rainfall or high evaporative demand. Midday values were occasionally less than −7 MPa when evaporative demand was high. Simulated responses to the 1986 drought indicated that initial soil water potentials at planting affected survival at values of less than −0.064 MPa in a sandy soil. Simulated growth was very sensitive to the photosynthetic rate, less sensitive to initial soluble carbohydrate concentration, and insensitive to instantaneous carbon allocation in relation to drought stress. The predicted increase in total root length for 1985 corresponded to the responses reported in several controlled environmental studies, but these were generally higher than those reported under field conditions. The results suggest that the carbon balance algorithm represents potential root growth within the constraints imposed by the model assumptions. The extreme diurnal fluctuations in plant water potential indicate that one or more important components of the plant system used to regulate short-term drought stress are not represented. Both stem tissue capacitance and the hydraulic conductance of mycorrhizal mycelia at low soil moisture contents may be important in controlling short-term water deficits. Further advances in the application of similar models depend upon an evaluation of these variables and a better theoretical and experimental determination of the effects of the geometry of the transplanted root system.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3