Abstract
An adenylate cyclase present in the brain of the moth Mamestra configurata Wlk. that is stimulated selectively by low (micromolar) concentrations of octopamine has been characterized with respect to several properties. The optimum pH, optimum ATP:Mg2+ ratio, the concentration of ATP required for half-maximal and maximal reaction velocity, metal ion specificity, effect of NaF, and effects of GTP and 5′-guanylylimidodiphosphate were in general similar to those of catecholamine-sensitive adenylate cyclases from various regions of mammalian brain. However, ethylene glycol bis-(β-aminoethyl ether)-N,N-tetraacetic acid (EGTA), a calcium chelator, stimulated both basal and octopamine-sensitive enzyme activity in the insect brain, whereas in mammalian brain EGTA is usually observed to inhibit basal activity but not catecholamine-stimulated activity.Adenylate cyclase activity of the 47 000 g particulate fraction of the insect brain was almost undetectable in the absence of added GTP. Addition of saturating concentrations (100 μM) of GTP to the particles restored about 30% of the basal and octopamine-sensitive enzyme activity present in the homogenate. Addition of 100 000 g supernatant to the particles doubled both basal and octopamine-sensitive enzyme activity in the presence of saturating concentrations of GTP, indicating that in addition to GTP, a cytosolic factor(s) is necessary for enhanced adenylate cyclase activity.
Publisher
Canadian Science Publishing
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献