Author:
Chatterjee R.,Tuszyński J. A.,Buckmaster H. A.
Abstract
The relationship between the parity P, time θ, charge C, and Hermitian h conjugation operators and the irreducible Racah tensor operators is reexamined. Polar tensor operators (describing electric properties) are distinguished from axial tensor operators (describing magnetic properties and angular momenta) on the basis of their individual parity and time conjugation properties. However, the effect of the Pθ product conjugation is identical for both classes and for even rank is equivalent to the Racah definition for the Hermitian conjugation of a tensor operator. It is shown that this property separates the Racah tensor operators from other vector quantities like linear momentum which cannot be represented by such operators. The selection rules due to parity and time conjugation and Hermitian conjugation that arise in the calculation of the matrix elements of the tensor operators and their products are then obtained self-consistently using the Wigner–Eckart theorem.
Publisher
Canadian Science Publishing
Subject
General Physics and Astronomy
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献