Matrix effects on mass spectrometric determinations of four pharmaceuticals and personal care products in water, sediments, and biota

Author:

Dussault Ève B.12,Balakrishnan Vimal K.12,Solomon Keith R.12,Sibley Paul K.12

Affiliation:

1. Department of Environmental Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.

2. Water Science and Technology Directorate, Aquatic Ecosystem Protection Research Division, Environment Canada, Burlington, ON, L7R 4A6, Canada.

Abstract

Simple analytical methods were developed for the extraction and determination of four pharmaceuticals and personal care products (PPCPs) from water, sediments, and biota. PPCPs were determined using tandem LC–MS in electrospray ionization mode, and interactions with matrix co-eluents were investigated. Extractions of water samples were performed using solid-phase extraction (SPE), sediments were extracted by pressurized liquid extraction (PLE), and biota was extracted by liquid extraction. The selected analytical methods yielded recoveries ≥ 61% in all matrixes. Matrix interactions were investigated throughout the linear range of quantification of each compound, revealing that dissolved salts had relatively minor effects on ionization (between 14% suppression to 12% enhancement), but that sediment and biota extracts caused significant matrix effects (ranging from 56% suppression to 25% enhancement). The direction and magnitude of matrix interactions reflected the physico-chemical properties of each analyte, particularly their pKa. Among the compounds analyzed in electrospray positive mode, carbamazepine was insensitive to matrix interactions, because it is a strong proton acceptor (pKa= 14.0). In contrast, atorvastatin (pKa= 4.5), a weaker proton acceptor, was particularly sensitive to matrix effects. For those compounds analyzed in negative-ion mode, sample alkalinity was found to be important. With a pKaof 10.4, 17α-ethinylestradiol generally exhibited matrix enhancement with increased sample alkalinity. However, the presence of acidic co-eluents contributed to matrix suppression. Lastly, TCS was particularly sensitive to matrix suppression, as its circumneutral pKa(7.9) caused even slight changes in sample pH to considerably impact ionization. We conclude that while different matrixes have clear impacts on ionization of these PPCPs, matrix effects can be quantified and overcome.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3